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ABSTRACT
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PROGRAM STATUS
This is an interim report on a continuing NRL problem.
AUTHORIZATION
NRL Problem 802-35

Project RF 05-5562-403-6079

Manusgcript submitted August 11, 1970

ii



SOME INFORMATION PROCESSES
FOR ARRAYS OF SENSORS

INTRODUCTION

In much of the work done using arrays of sensors it is assumed that the energy fieid
can be represented adequately by a finite set of discrete sample values taken at points
in space {1-10] and time [11-17]. Representing a field over an interval of time by a
single, multidimensional array of data permits formulations of the sensor-array prob-
lem that are well suited to use of known mathematical techniques on existing mathemat-
ical machines. We consider here some resulting transformations and analysis proce-
dures that can provide operationally useful information from operational acougtic arrays.
In particular we discuss (a) multidimensional generalized transforms that map arrays
of data into arrays of coefficients of basis functions and (b) formal analysis procedures
that operate on the arrays of coefficients to provide estimates of desired field or
source parameters. The data arrays may result from nonuniformly spaced sample
points [18-21] in space and time. The basis functions are exemplified by exponentials
in wavenumber-frequency space, and for that case the analysis may be applied to the
array of coefficients to provide estimates of the spatial and temporal frequency com-
ponents of the field.

The use of multidimensional Fourier transforms to estimate the properties of
seismic, meteorologic, and acoustic fields is well known [22-26] . There are some
particular advantages to their use on the acoustic fields arising from distant periodic
acoustic sources, that is, fields composed of periodic plane waves. The use of general
complex exponentials and of certain non-Fourier basis functions for representing
selected classes of waveforms is also well known [27-32]. Some of these techniques
and some related interpolation and approximation procedures are developed further
for application t¢ multidimensional arrays of nonuniformly spaced acoustic sensors.
Analysjs-of-variance techniques are then applied in the transform domain to obtain
the desired estimates. A review of some previous work on the representation of con-
tinuous functions by sets of discrete values, that is, sampling and interpolation theory,
is given in Appendix A.

Work by Iyer, Berg, and otherg [22-24) on seismic array processing by integral
transformations and work by Andrews, Oppenheim, and others {33-36] on image proc-
essing was taken as a point of departure in studying multidimensional transformations
for sampled data from arrays of sensors. The aliaging and side-lobe structures for
Peurier transforms of two-dimensional arrays of data (time samples from one-
dimensional arrays of sensors), and the affect of conventional smoothing (hamming,
hanning, etc.) and of some other forms of smoothing on two-dimensional transformed
data, were investigated. A computer program was developed to simulate an environ-
ment and an operational acoustic system, including estimating the parameters of
signal components (i. e., estimating the location, frequency, and amplitude of each
gignal-component source).

These simulation studies, when applied to a model of one important Navy problem,
showed that more general transformation procedures were needed if full advantage was
to be taken, in real systems, of actual array characteristics and of the wave-equation
constraints on space and time data from acoustic fields. In particular, when high
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performance must be achieved over several octaves of frequency, adequate sampling of
adequate apertures in space and time becomes prohibitively costly. Conventional array
processes lack effective synthesis procedures and generally lack desired uniformity of
system performance over the expected range of environmental situations., Most actual
gynthesis procedures for space-time processing, those of Wiener, Bryn, Mermoz,
Widrow, and others (23, 37-40], have seemed unattractive for certain important Navy
acoustic problems, both because they assume either unnecessarily broad classes of

-gignals -or-exactly known signals and because they do not lead to effective space and
time sampling procedures {i. e., array design and sample gpacing).

A promising approach, related both to work of Hugging et al. [27, 41, 427 and to much
fundamental work in mathematical analysis{see, for example, Refs. 43, 44, and 4§}, is
that of transformations using carefully selected basis sets {seis of multidimensional func-
tions or sets of number-arrays) by which a desired class of multidimensional signals
{acoustic fields) can be adequately and efficiently represented. Asg we are concerned
only with finite infervals of space and {ime, with band-limited signals and noise, and
with energy fields constrained by the acoustic wave equation and by other known source
and medium constraints, the general representational problem may be simplified and
narrowed to manageable size without doing violence to its relation to the real world.

All of the mathematics is finite and discrete (and can be expressed interchangeably

in mathematical language or in a suitable computer language). In particular, if we
actually have to deal with only a moderate mamber (perhaps a few tens of thousands)

of different signals, and if this number is a sufficiently small fraction of the total num-
ber of different signals that are allowed and resolved by the bandwidth and the space and
time aperture of our system, we may reasonably take the signals themselves (or rather,
the set of space and time samples of the gignals) ag our basis set. That is, if the rum-
ber of different signals is small enough, it may be reasonable to provide analysis that
is the equivalent of multidimensional matched filtering for each different signal {461

In general the muliidimensional fransformation matrix for an arbifrary sample-
point spacing and an arbitrary basis set cannot be factored to as great an extent as in
fast-Fourier-transform processing of uniformly spaced samples, The conditions under
which factoring of the matrix is maximized and the question of whether acceptabie con-
straints exist on array design that provide a highly factorable matrix {i.e., that reduce
processing operations by approximately log; #/m} are being investigated, Where uniform
sampling is done in one dimension of a multidimensional sample space, matrix factoring
is possible {e.g., for an m-by-r» sample set, if the = samples are uniformly spaced and
the n gamples are not uniformly spaced, the number of operations can approach
{(mlog, ) »" . Thus if » ig very large compared to n, 2 very efficient transformation
is possible even with nonuniform spacing of the n samples). Other questions of weight-
ing or smoothing criteria for transformationg of nonuniformly spaced samptes, of
aliasing effects, and of sensitivity of the transformations to samplie location errors, are
being investigated.

By this fransiormation approach the entire field as scen by the sensors is repre-
sented by a single, multidimensional array of numbers (e. g., an array of complex num-~
bers in wavenumber-frequency space}). Egstablished statistical testing procedures can
be adapted for estimating the signal parameters. Initial computer simulation runs
applying analysis of variance to simulated eight-element and 18-element acoustic arrays
have been made. This technique yieids estimates of the effects of physically significant
subsets of the transformed data. The result is that expected of an optimum receiver,
since the F test used can be derived by maximum-likeiihood methods [47]. Further
work is being done on modified analysis-of-variance procedures that will be more effec-
five in the presence of highly nonigotropic and nonwhite noise fields. All of these test
programs, as well as trangformation programs, are kept in a form that can be applied
to recorded field data from operational acoustic arrays as well as to the simulated
acoustic fields that are used in developing the tests.
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In summary, as a step toward the effective application of advanced programable
digital machinery to the outputs of the sensors of large, wide-band, operational acoustic
arrays, we aim for these capabilities:

1. Procedures for transforming sets of values at arbitrary (or nearly arbitrary)
points in an energy field into a representation in an arbitrary (or nearly
arbitrary) estimation space. That is, procedures for expanding a finite set of
discrete data, representing a field at selected points in space and time, on a
selected finite set of multidimensional basis functions.

2. Procedures for selecting sampling points in space and fime and for selecting
basis sets for signal representation, in terms of the expected characteristics of
the acoustic field and in terms of the kinds of information wanted from the field.

3. Procedures for estimating desired parameters of acoustic fields (or acoustic
sources) from the representation of the field on the selected estimation space
(or basis set).

In this report we discuss some work on the first and the third of these. Generalized
multidimensional transformations that can represent data from nonuniformly spaced time
samples from nonuniformly spaced array elementg, on a large class of sets of bagis
functions, are discussed in the next section. Analysis-of-variance processes for esti-
mating the parameters of signals from their representations on the selected set of basis
functions are discussed in the third section.

The familiar wavenumber-frequency {(Fourier) transformation that is used on
seismic-array data, together with the various statistical tests applied to the transformed
data (23, 24, 48], is an example of the general approach considered here. We begin with
a more abstract formulation of the array problem, because this facilitates consideration
of some other concepts and techniques which appear promising for our application - that
iz, for a study of transformation and estimation techniques for real-time application to
large operational acoustic arrays, using computing machinery forecast for about the
period 1973-1978.

INTERPOLATION AND TRANSFORMATIONS

Finite series consisting of the linear combination of a finite number of basis func-
tions have been used extensively to approximate continuous functions which have been
sampled on a finite range of their independent variables. When the set of basis functions
used ig orthogonal on the sample points, these finite series exhibit many properties of
infinite series and functional transformations (49]. As a result of this fact and as a
result of simplification of calculations resulting from orthogonality of the basis func-
tions, most of the work on finite series has been concentrated on the use of orthogonal
basis functions. A desired representation of an acoustic field which has been sampled
at unequally spaced intervals by sensors in an acoustic array may not result in ortho-
gonality of the basis set.

In the discussion which follows, quite general expressions are derived for approxi-
mations based on nearly arbitrary selections of basis functions and sample points.
These results are applied to processing of information sampled by acoustic arrays
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Theory

Following notation similar to that used by Young and Huggins [29], a function f(x)
may be approximated over a finite range L of its independent variables by a finife sum
of n basis functions §; (x) by

n

f(x)mY €5, (). (1)

k=1

In this expression f(x), ¢, and §; (x) may be real or complex. The quantity x denctes a
vecior, the eomponents of which are the independent variables. Sampling &« at the o
points x;(j=1,2,...,m») yields the » approximations

f(xﬁ)zzcks.&{xj)r I=4 2 ....m {2}

k=1

If the number of sampling pointy eguals the number of basis functions {n = n) » the
approximation sign in (2} may be replaced by an equal sign to yield » equations in the

n '8 which, if independent, may be solved for the ¢, 's. In this case the approximation
of the continuous funetion in (1) becomes exact at the sampling points and the finite
series becomes an interpolation between the sampled points, I the number of sampled
points exceeds the number of basis functions {» > n), the approximations (2) may be
solved for the ¢, 's subject to some desirable constraint, e. g., least-square error;
m=n is a special case of » > n for which the error of representation of the function

at the sample poinis is zero.

The differences between the left and right sides of (2) represent the errors in
approximating f(x) at the sampling points. Following the approach faken in infinite
series representations the ¢, 's will be determined to minimize the sum of thé squares
of these error terms. Representing this sum by €2,

2

m

e2:Z

j=1

n

f{x.) - c, 5, (x.)
i k; EVk }-

(3

To minimize e2 Eq. (3) will be differentiated with respect to the real and imaginary
parts of each ¢, and each derivative will be set equal to zero. This will result'in n
equations from the derivatives with respect to the real parts and » equations from the
derivatives with respect to the imaginary parts. If these 2n equations are independent,
they may be solved for the n complex values of ¢,. Let a; be the real part and 5, be
the imaginary part of ¢;:

€, = 2 t ib ke
Differentiating with respect to a; and 5 yields

n

2 a — —_
o R ]

s k=1

+ Ss<xj) [f{xj) - chksk{xj)j” =0
ast (4}
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and
de? _ = S.( HER o
35 = —12 s Xj) (XJ-)— Z Cksk(xj)
5 j=1 k=1
S (%) [F(x) - " o, S (x|} =0, (5)
o= Foneed]

where the overbar denotes the complex conjugate. The 2n real equations (4) and (5) may
be combined into n complex equations by setting

e’ Ze?
—_ : = .0’
3&3 T b, (6)
which after simplification gives
D56 3 oS - 35 ) Fexp) = 0. (1)
i=1 k=1 i=1

Since the range of the sums in Eq. (7) are finite, the order of summation may be
interchanged to yield

Do DS &) Sxp) = Zss(xj) £(x;). (8)

Equations (8) represent a system of n equations in the » unknowns ¢, which, if they
are linearly independent, may be solved for the c,'s.

The conditions in Eqs. (4) and (5) which lead to Eq. (8) insure that the solutions
of Eq. (8) will lead to a stationary point in e2. As e® is a non negative quadratic form
in the c,'s, this stationary point is assumed to be a minimum.,

Examination of Eq. (8) indicates that considerable simplification will result from
introduction of matrix notation. The a-by-n matrix P will be defined by

P =[Pi] =[Skl (9)

We also introduce the vectors f and ¢
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In terms of these newly defined guantities, Eq. {8} may be written
plpc = piz, {10}

where PTdenotes the Hermitian conjugate of P, the n~hv-m matrix which is the complex
comugate of the transpose of P PV = (P, ;1. If the n-by-n matrix {P'P} is nonsingular,
its inverse exists, and we have

— tpy—1 pf
c = (PPy " PIf. (tn

Equation (11} states that Pt operates on the a-dimensional vector to project it on to an
n-dimensional space; the n-dimengional - is computed from this projection by the
transformation (pipy-1 ., Equation (11) permits computation of the coefficients ¢, of
the n basis functions S,(x) in (1) to yield a best {(least-squares) approximation of the

m sample values f(x,) subg‘ect to the limitation that the n -by-n matvix formed from the
S, sampled ai ihe x4 (PTPYY, be nonsingulgr. This is the only limiiation imposed on
the basis functions of the sample points to validate Eq, (11}

Three special cases of Eg. {11) are important in the discussion which follows: (a} the
number of gample pointg and basis functions are egual (» = n) , (b} the basig functions
form an orthonormal set, and {c} #(x) is tne of the basis functions.

When m= n, the matrices P, P}, and P! are square. In this case the condition
that PP be nonsingular requires that P! and PT be nonsingular. Invoking the matrix
identity (48y~! = g1 4~! permiis Eq. (11} to be written

e=(Ptpy1 pfr= ptlpt-tpty - piy (12)

This eguation could have been obtained directly from (2} with the approximation sign re-
placed by an equal sign. It permits the finite series in (1) to be fitted exactly to sample
points ¢ (x;3. Choice of the basis functions and the sample points is subject only to
the limitation that the matrix P be nonsingular. Thus, for example, the spectrum of a
continuous function f(x) may be egtimated from a set of sampies f(x;y even though the
sampling points are not equally spaced on x. Similarly the spectrum may be estimated
at a set of nonharmonically related frequencies. It should be noted that P~! depends
only on the basis functions and the sample points and thus need not be reealeulated for
each new set of sampled data. The techniques of the fast Fourier transform [49] are
applicable to the computation of Eq, (12) if the matrix P! ig factorable but in general
will not be ag advantageous as in the case of harmonically related bagis funetions and
equally spaced sampling points.

¥ the basis functions form an orthonormal (not necessarily complete) set, then

ZSk(xj) Sp(x;) = B4, (13)

izl

i.e., P'p = 1 where I is the n-by-» identity matrix. In this case Eq. {11} becomes
c=Plr, or

e = D 5,00 Fxp). (14)
=1
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The expression is independent of the relative sizes of = and n; that is, it is valid for
both exact fitiing of the data at the sample points and for fitting in the least-squares
sense. In other words the coefficients of the basis functions which form an orthe-
normal set are independent of which subset of the functions is used to form a least-
squares fit to the data. A special case of this is the truncation of a Fourier series for
smoothing experimental data [50].

If the function to be approximated is one of the basis functions, the vectorf is the
gth column of the matrix P. Thus PTf isthe kth column of the matrix (PfP) . By defini~
tion of the inverse (pipy-! the kth element of (P'P)~1(PT#) will be unity and all other ele-
ments will be zero. This outlines the proof of the intuitive conclusion that, if f(x) is one
of the basis functions, approximation (1) will be a least-squares approximation to f(x)
if the coefficient of only the appropriate basis function is different from zero. This re-
sult will be of special interest in the discussion of processing signais from an acoustic
array. ;

Interpolation and Smoothing y

Expression (1) is the approximation of a function over a continuous interval of its
independent variable. Equation (11} permits calculation of the coefficients c; in (1)
to make it a best (least-squares) approximation to the sampled data by using a matrix
determined by sampling the basis functiong at the sampling points. When the number of
sampling points exceeds the number of basis functions (m > n), Eq. (2) approximates
the function at the sample points, in the least-squares sense, and (1) may be considered
a smoothed representation of the continuous function 7(x). When the number of sampling
points equals the number of basis functions (m = n), (1) is exact at the sampling
points x; and provides interpolation befween the sampling points.

To simplify the notation further we introduce the matrix U= (PTPy~' PT, Then
Eq. (11) may be written ¢ = Uf, or

¢y = Z U £} (15)
j=1

Substituting (15) in (1) yields

n

F(X) E Z Uy; FGx;) Sp00)
i=1

k=1

or

ZOESY [Z UkjSk(x)] £(x,)- (16)

j=1 Lk=1

The inner sum in (16) is an interpolation function when m= » and determines the con-
tribution of each sample point to the continuous approximation of f(x). It is a smoothing
function when = > n. Let

I(x, xj):Z U Se(x) j=1 2. ...om, (1

k=1
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represent these interpolation {or smoothing} functions. The exact forms of the I's
will depend on the choice of the basis functiong and the sampling points and in general
will be different for each x;. Some examples of the analogous infinite case are given
in Appendix A, and the finite case is illustrated in Appendix B, Rt S

Spectrum Estimates - Discrete Fourier Transforms

For acoustic signal detection and parameter estimation it is desirable to use the
coeificients c, in (1) rather than the continuous approximation represented by that
equation. It is customary to speak of the ¢, 's as a "transformed" representation of
the f(x;)'s, the transformation being carried out by the matrix ¢ty P in Bq, (11).
The exact nature of the fransformation and the appropriate interpretation of the result
will depend on the basis functions chosen and on selection of the sample points x i

The most widely used transformations of this type involve imaginary exponentials for
basis functions: :

Sk(x} = e2w'ika, (13)

where the 7, are chosen to be equally spaced in the "frequency" domain and the x; are
equally spaced on x. Thege transformations have many properties similar to the
conventional Fourier transform [48-52] and have therefore become known as the
discrete Fourier transform (DFT).

If the function f(x) is band limited and the sample point spacing satisiies the
Nyquist criterion, and if #(x) is periodic on the interval over which the samples are
taken, i.e., f(x)= f(x + L), the DFT will yield precisely the same information as
the conventional Fourier transform. Of considerable interest is the interpertation of the
DFT when these eriteria are not satisfied.

Because of the parallels with computation of the Fourier transform, caleulation of
the c,'s for the case of equally spaced f, and x; is usually referred to as determina-
tion of the complex spectrum of #(x). Estimation of the complex spectrum from the
c.'s has received considerable atiention in the literature (53,54]. Errors from the
use of the DFT to estimate the spectrum arise from two sources: the finite range of
x over which f(x) is sampled and the finite number of samples taken within this range.
As indicated, these limitations do not give rise to errors when the function f(x) is band
Iimited and is periodic over the interval on which it is sampled. For more generat
functions the first limitation (finite interval of x) resuits in the spectrum being sampled
by a finite window, which may extend over a considerable range of frequencies. The
second limitation (the finite number of samples within the interval) resuits in aliasing
of the spectrum. Rather than treat these phenomena as separate this discussion will
show that they both may be congidered ag direct consequences of the way in which the
¢ 's are generated. We will first consider the interpretation for a single imaginary
exponential and then treat a more general f(x) as the superposition of such simple
funetions.

First consider the case for which f(x) is the single exponential

Flxy = 2mifx,



NRL REPORT 7181 g9

The usual computation of the DFT corresponds to selection of basis functions and sample
points:

Splx) = e2Titk=1)x/L), x; = (= 1) L/n, (19)

where L is the interval over which f(x) is sampled and n is the number of sample points
within the interval. Using the orthogonality of the S;(x;), the coefficients of the DFT may
easily be shown to be

e :%Z e2mi(FL—k+1) (j-1)/n (20)

i=1

When 7L is an integer, f{x) is one of the basis functions and we have, in accord with the
previous discussion, ¢, = 1, and ¢, =0 if k# fL+ 1. When fLis not an integer, Eq.
(20) generally yields nonzero values for all ¢, , which may be interpreted as spreading
or leakage caused by the window referred fo earlier.

An interesting interpretation of Eq. (20) is obtained by considering the interpolation
function which arises from the choice of basis functions and sample points in Eq. (19).
From Eq. (17) that interpolation function is

n
_ 1 275 (nx/L—j+1) {k-1)/n
I(x, xj) = - Z: e .

k=1

(21)

This expression is exactly the same form as that for the DFT in Eq. (20) with nx/L
playing the role of fL and the roles of j and k being reversed. This symmetry arises
from the orthogonality of the 5,(x) and the symmetrical appearance of & and j in both

Eq. (19) and Eq. (20) and does not hold for other choices of the basis functions and
sample points. For this case {basis functions which are equally spaced, imaginary ex-
ponentials, and equally spaced sample points) the spectral window has just the same form
as the interpolation function based onthe same choice of basgis functions and sample points.

If f(x) is of the class Ly(-=, «), it may be expressed as a superposition of imagi-
nary exponentials by its Fourier integral:

F(x) = f F(f) e?™ifx gf | (22)

il 7]

where F(f) is the complex spectrum or Fourier transform of f(x) . Again using the
orthogonality of the s (x Pr

cp = f F(H) [H:T zezm‘(nmkﬂ}u_l)/ﬂ] df

—m J=1
- fmF(f) w(E) df (23)

— @

where the weighting function w(f) is the spectral window applied to F(f) in calculating
the .DFT. The utility of the ¢'s for estimating F(f) stems from the fact that w(f)
(which as we have seen has the form of the corresponding interpolation function in
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Fq. (21) has a maximum value at fL = k-1 and is smaller elsewhere. As the number
of sample points tends toward infinity, we have

. re mi(FL—k+1) sin m(fL — k + 1}
- [Fe [emiceimiony sinmtfL ok 2 1) g (24)

0

The exponential term grises because the sample points x are nof symmetricaily dis-
posed about x = 0, and the sin x/x term is the aciual shape of the speciral window.

It can be geen that, asg the interval L over which #(x) is sampled {the aperture)
increases, the width of the window decreases. It can also be seen that its shape is
independent of k. Thus each ¢, arises from application of the same window, centered
about a different frequency 7= (x — 1)/L.

It can be seen from Eq. (23) that the window used in determining ¢, is periodic
on the interval »/L. Thus w(f) has peaks af

_ﬁ;_%ji.,j:ﬂ,illi2"__, {25}

f=
H the ¢, is considered to represent F(f) in the vicinity ofthe peaks of w(r), i is seen
that each ¢, may contain contributions from F(syat several frequencies. This phenom-
enon is the spectral aliasing mentioned earlier. Even if the Nyquist criterion is
satisfied, L.e., F(fy= 0 for |f] > n/21, some aliasing can occur as a result of the
finite width of the window.

When f, or x; are unequally spaced and f(x) is a single imaginary exponential,
the coefficients ¢; may be written, using Eg. {15}, as

in
cp = EUM eZmifx; (26)
j=1

As in the previous discussion Eq, (26) when considered a function of £ is the weighting
function applied to F{f) in determining the approximale spectrum of f{x). The sym-
metry between ;j and & is not present in this equation, and in general the form of

the function depends on k; i. €., the weighting function differs for each coefficient

e, - I the sample points x; are equally spaced (whether or not the £, are}, the ¢,
will be periodic in f on an interval of »/2L and the preceding discussion of spectrum
folding applies. When the x; are not ralionally related, the ¢, will not be periodie
but will still have a multiplicity of peaks. In general the peaks will have different
magnitudes and shapes, indicating thai the weighting applied to each alias wiil be
different. There is no assurance that the peak at £ = (¢ - 1)/L will be the largest,
as can be seen in Appendix B.

Power Spectrum and Total Power

The power density function PDF of f(x) as expressed in Eq. (22) is usually given
to be

weE) = [Pyl 2
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N . 2
To the extent that ¢, represents an approximation of F(f), Ickﬁ may be used as an

approximation of w(f)
The total power is expressed as

M= me(f) df

=

or

_ lim 1 X 2 (27)
H_Xaoo_z_}?.[ Jf(x)| dx .

A useful estimate of the total power is

n n

1 21
M 3 Gl =

j=1 i=1

n

D aS(x)

k=1

2

¥

which becomes

It n

= ckq[_; > Seex;) Sh<x,-%]. (28)
1 J=1

k=1 h=<

When the basis functions are orthogonal on the sample points, this simplifies to

I = z" fe l?, (29)

k=1

which is parallel to Eq, (27). It is important to note that Eq. (29) does not hold for
nonorthogonal basis functions.

Smoothed Spectral Estimates

2

Even when large numbers of samples and large apertures are used, ¢, and |cl
have disadvantages for estimating the spectrum F(f) and the power density function
W(fy . One disadvantage, already mentioned, is that the weighting function w(f) may
not fall off sufficiently rapidly from its peak value to permit accurate estimation of
F(f) for those cases where Ff) itself may have large peak values. That is, the
leakage caused by the "side lobes" of the spectral window may cause a large peak in
F(f) to mask the true spectral levels at other frequencies. A second problem is that
for many classes of f(x) the ¢, may not be a consistent estimator of F(f) (54]. For
these reasons, considerable attention has been given to the problem of improving the
estimates, and in particular to estimation of the PDF. Some techniques involve
operations on f(x) directly, before transformation, and others operate on the c,'s
after transformation. In whatever domain the smoothing operation is performed,
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it may be considered an atlempt fo improve the speciral window used to determine the
c,'s.

Consider, for example, application of a weighting function applied in the x domain:
£y = flxy 6. (30

The Fourier transform of f'(x) is the convolution of F(f) and 8(f), the transform of
(7[6'94

F(fy = fO(F ~1) F(A) di.
The coefficient ¢, is thus seen from Eg. (23} to be
¢ = fF'(f}w(f) df = ff w( FYBLF — WYF(N) dfda
= frep [f@(Aj WCF + X di] df. {31)
The expression in brackets is a modified weighting function formed from &(f) and the original
weighting function w(f). Thus the new weighting function, or window, is formed from

the old by a process which does not depend upon selection of the basis functions or
sample points.

For some applications it is desirable to perform the smoothing operation in the 5
domain; for example, for n basis functions

[l
Ck:g ahck‘{'h; 6ﬂ+s :Cs’c—k :Cn«-k . {32}
a

If the operation is to be carried out frequently using the same smocthing function, it
may be desirable to infroduce a new matrix 2, computed once and then used in place
of P71 in computing the ¢,'s. Thus

[Pl = Zah [P j—,lk*h]' (33)

For the gpecial case where the frequencies of the basis functions are equally spaced
the spectrum of 8(x) is a sum of delia functions,

() = Z a, 8¢f — h),
il
and the corresponding weighting funciion to be appiied in the x domain is

B(Xj) = Za}} eZTibx L (34)

h

Most of the smoothing functions discussed in the literature are symmetrical about h=0 ,
in which case Eq. {34) becomes

6(x;) = ag + -12— Zaﬁ cos (2mhx,/L). {38)

Note that these equations are applicable for arbitrarily spaced x; .
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Sampling and Transforming Acoustic Fields

A wave in a three-dimensional medium can be represented by

- —27i (kxthyytkyztFt)
Fle, k. by, ) = fffftex, v, 2, 0) 7T S Ddndydzdt, (36)

where the k's are the wavenumber components in the direction of their respective
space coordinate axes [24]. The wave along a line in the field can be represented by

Fik,, £y=ffree, £y 2O O gy, (37)

which is analogous to the Fourier transform representation of a picture in transform
image coding [55]. Finite discrete processes (digital computers) can, of course, per-
form transformations on sampled data from acoustic arrays. The discrete Fourier
transform analogous to the transform of Eq. (37) has been used in several simulation
experiments, and one example of its use with an analysis of variance process is dis-
cussed in the next section.

The pressure J in an acoustic field in a homogeneous medium satisfies the wave
equation

2
vi - L 2¥ oo,

c? ot? (38)

Its solution can be expressed as single-frequency plane waves summed over all direc-
tions of travel and over all frequencies. This plane-wave expansion may be writien

i, v, 2, £) = [ff8s, 6, k) etk et —sint (xeosgrysing) —zcostlygaog, (39)
where ¢ and ¢ are the usual polar coordinates of each plane-wave component.

Many accustic problems (for example detecting and locating specifiec sound
sources) require estimating ¥ as a function of wavenumber and direction from samples
of ¢ taken over a limited region of space and over a finite time.

Let the coordinates of the hth sensor be the components of the vector r B
h=1, ..., m, and let the output of each sensor be sampled at the times ¢. , j=1, ..., n
Then a data array consisting of m» x » data points y/(r,, t;) results. Using the
approach taken previously, some ¥ < mx n basis functicns could be selected to approxi-
mate the field, and the techniques previously described could be applied to determining
the coefficients of the approximation and interpreting the regults as an estimation of
the desired properties of the field. Instead we may choose ' basis functions which
depend on space only and rn' basis function which depend on time only. The approxima-
tion is the double sum over products of these basis functions:

Yir, ) mz Z Cpq Sp ()Tt . (40)

p=1 g=1

Approximation (40) is the equivalent of (1). Following the procedure used previously,
the error in approximating each of the values in the data array may be determined and
the coefficients chosen to minimize the sum of the squares of these errors.
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The result, equivalent to Eg. {7), is

S ISEREED DS STy =Y D SLERT, () b, )
h=1 f=1 p=1 g=1 h=1 =1

or equivalently

'

Z Z[ 5 () Sp{rh}] cpq[z Tv(tj)Tq(t},}] = Z Zsu(rh) (g t) T (a1
P=1 1 i j

g=1LAh=

The matrices Pand ¢ are defined in terms of the basis functions as

42
P= [Phpizsp(rh) and Q= [qu}ETq{tj). t42)
Those representing the array of coefficients ¢,y and the data array are
(43}
c=le, ] and ¢ = [p, ) =gy, £)).
In terms of these matrices Eq. (41} may be written
(PTPy c (RQT) = PT yol. {44}
If the matrices F'P and 001 are nonsingular (the only limitation on selection of basis
functions and sample points), Eq. {44) may be solved for ¢ as
c = (PEPYTT Plyot (oot (45)

Equation (45) is analogous to Eq. (11}, Note that the order In which the space transform
(ptpy~! Pt and the time transform 0f(Qpty-! are applied is immaterial, We iniroduce
the matrices ¥ and ¥ such that

U= U] =(Ptpy Pt and ¥ = v; = ot ooty 1. {48)

The discussion of Eq. {11} involving equality of » and n, orthogonality of the basis fune-
tion on the sample points etc. applies to Eq. {45). In particular, if m= a', then 7= P!
and if n= n', then v = 07!, I the basis functions are orthonormal on their respective
sample points, then = piand v = 0%, which leads to

= D D S Ty £)). (47}

h=1 j=1
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For arbitrary = and n the procedure which led to Eq. (17) now leads to the analogous
interpolation function (or smoothing function)

I(r,ry, t, €)= Zuphsp(r) z Vi T, () (48)
p=1 g=1
This is just the product of two interpolation functions of the type which has already been
discussed.

To estimate ¥(¢, 6, k) in Eq. (39) we consider first the case where y(r, £) isa
single plane wave of a single frequency. Then

Y(p, 6, k)= 5(d—,) 8(F-0y) Blk—ky).
and the pressure wave may be written
$(r, t) = etFoct - o) (49)

where N, is a unit vector in the direction of travel of the wave and

r - Ny = (xcosg, + ysing,) sinf, + z cos 50‘

For this case the coefficients in (40) become

m 4 ’
—korpe Ng ikgct
[ o] - e R J
P Z Uon Z Vige !
hol i1

which is the product of two expressions similar to that in Eq. (26). For the plane-wave
expansion in Eq. (39), the coefficients may be written -

esa =SS (6.8, kyw" d)Wee., 0, k) dedbdk, (50)

"

where the weighting functions w' and w" are

wi(p, 0, k)= ZUph e—.ikrh'N

k=1

and
e ikct;
w(k)_Zque i,
J=1

These expressions are similar to Eq. (26), and the discussion pertaining to that equation
involving folding or aliasing, shape, etc. applies here also. The dependence on k is a
result of the link between space and time variables which arises because the pressure
wave must satisfy wave equation (38),



16 SWICK, YOUNG, AND FINNEY

ANALYSIS OF VARIANCE

The analysis of variance is a statistical technique used to separate the influence
of different sets of parameters on observed data and to estimate their effects. It was
originally developed by R. A. Fisher in the 1920*s for application to agricultural ex-
periments. We apply it here to the two-dimensional discrete Fourier transform of time
samples from a line array of sensors.

In the form suited for this wavenumber-frequency data, the “two-way layout,” we
consider ¥ replications of 1-by-J data matrix. Let y, , denote, the ij""cell. We
assume initially that

(51}

¥ikj T i T Cijk

where the {;;} are unknown constants and the {e;;r} are (initially) independently and
identically distributed normal variates with zero mean.

In the original applications the {y;;,} may have been crop yields, with the rows :
corresponding to plant variety and the columns to fertilizer type. The experimenter ,
wished to determine the main effects of rows (variety) averaged over all columns
(fertilizer), the main effect of columns averaged over all rows, and the interactions,
if any, between rows and columns. The interactions were of secondary importance, :
but it was nevertheless essential to estimate them, since the effect of a fertilizer on i
one variety of plant may not have been the same as that on another. :

The technique can of course be applied to any data satisfying the assumptions.
Richters [56] has applied it to the seismic discrimination problem. He was concerned
with estimation of the effects of "nuisance’ parameters (such as event magnitude and
distance). Here the absence of interactions between the nuisance parameters greatly
simplifies the discrimination problem, Shumway [57]has derived a general theory for
using regression and analysis of variance in the frequency domain as a simultaneous
estimation and detection technique for multivariate time series. His model is that
of a "one-way layout, " so the concept of interaction does not enter.

By contrast, in our application {o the Fourier transform of space-time samples
it is the interaction between wavenumber (rows) and frequency {(columns) that is of
primary importance, although the main effects of wavenumber and of freguency may
have interesting physical interpretations as well.

Least Squares Egtimates fo the Parameters
We sketch briefly the relevant definitions and theary following Scheffé [47] (see

especially section 4. 3). Using a common notation, a dot replacing a subscript indicates
an average over the missing subscript. For example,

K
¥Yij = Z ¥iji /K denotes the ijth cell mean,
k=1

.M‘“
M=

o
1l
-
b
"
o

¥p, < ¥ijk’ JK denctes the it row mean,
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and

I 7 Kk
y. = Z Z ¥;jx/ LJK denotes the overall mean.
i1 f=1 k=1

Let » = n _ represent the (unknown) mean of the two-dimensional spectral components
m; j - The main effects of the ith wavenumber and of the jth frequency are defined as

a; =M M (52)

1

and

(53)

respectively.

The interaction of wavenumber and frequency is defined as

')’jj:'f?jj —a,l.—,Bj—‘LL. (54)
Because = n_ _ , we have the "'side conditions"
a =B =y =¥ ;=0 ¥ ¥ (55)

The essence of the analysis of variance technique is the examination of inhomogeneities
in the data by means of which we make estimates §&;, 3,-, 3 and 7, i of these unknown

parameters.

ij

The variates e, in Eq. (51) represent the noise, which is defined as all unwanted
effects. If we consider the variates to be the "error,' the least-squares estimate of the
parameters is clearly obtained by minimizing the "sum of squares,"

I J K N
SS= Z Z > Wi~ (56)

An estimate, which will be denoted by a circumflex, is obtained by calculus as in the
previous section. We have

X
TR R AT I (657)

R
58= Z Z Z Oije = —B; =7y -2, {58)
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Eguations {55) and {58) yield the least-squares estimates:

I Y
AR T Y S (o

I K
ai:'jl_f(z Z(yijk_ﬁ}:yi..—y...‘ {ﬁ&}
i=1 k=1
p-lsy 8y = 81
ﬁj‘ﬁ;;@jjk“ﬁ)-}"'j_*y‘__, { }
Al oA A
yi.i:fz(yijk—“i_ﬁj_“)_yij‘_yi.._Y.j.+Y.._' (82}
k=1 . X

It is important to note that in deriving these estimates no use has been made of any
assumptions of normality, zere mean, or equal variance., We have simply minimized
the least-sguares “error,” so that when these estimates exist they are valid
for any distribution of the {e,;;,}. I the {¢;;4} are pairwise uncorrelated, have zere
means, and have the same variance, then these are the unique linear unbiased estimates
with minimum variance {47,58,55]. Tests of their statistical significance must of
course depend on the distribution,

Tests of Hypotheses

The general I -by;J analysig of variance with & replications per cell is usually con-
cerned with the testing of three hypotheses:

By all o) = 0, (63a)
Hy: all 8 = 0, {83h)
Hyp all y;; = 0. {83c)

Substituting the least-squares estimate, Eq. {57}, for n;; in Eq. (56} we obtain the
minimum sum of squares, or the “error sum of squares,™

I J K
5%, = Z ZZ Ciar—Yig Y (64}

If the {e;;;} are independently normally distributed, S5, can be shown [47! to have a
chi-sguare distribution with 1 J(k - 1)degrees of freedom



NRL REPORT 7181 i9

Under the hypothesis #,: all a; = 0 the sum of squares to be minimized is, from
Eq. (58),

2 -

I J K
SRDIDID NIRRT

Its minimum value, obtained by substituting the estimates given by Eqgs. (59), (61), and
(62), is

=S5, + KD 0y -y, O
The hypothesis sum of squares is defined as

§54= S5, —S8,

— 2
_‘IKZ(YI.."Y...)' (65)

Under the assumption of normality SS; can be shown [47] to have a chi-square distribu-
tion with I — 1 degrees of freedom and to be independent of S5,. Thus, under this
assumption, the (likelihood-ratio} statistic

$8,/(I-1)

=0 7 66
4785 /1J(K-1) (86)

has an F distribution with », = I—1 and v, = IJ(k—1) degrees of freedom. If « is
the false-alarm probability, we then have

P[FAgFQ; V.-Vz]zl_a’ : (67)
where F,; ,, ., is the "upper o point"” of the F distribution. If F4 > Fa; vy, vy » the
hypothesis #, is rejected at a level of confidence of .

Under the hypothesis #5: all ﬁ}. = 0 we have similarly

$Sp=IKY (v.; -y )% - (69)

Under the normality assumptions J

S8y /(J-1)

B85S /TJ(K—1) (69)
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has an F distribution with +»; = J -1 and v5 = 1 J(K - 1) degrees of freedom, and can
be used to test #5.

Similarly, the hypothesis Hip: all ¥; j = 0 yields
2
Ssminusse + K ZJZ(Yu. ~¥p.. =¥ty )%
We define

58,5=55 . -S§

minAE e

:KZZ(YU.—Y;‘..*V.,'. vy % {70}
r -

I normality is assumed, SS;; has a chi-square distribution with (I - 1) (s - 1)
degrees of freedom and :

S,/ (E-1)(J-1)

faz= S8, /IJ(K-1) (1)

hag an F distribution with »; =(I- 1)(J- 1) and v,= IJX - 1) degrees of freedom.
HF,sp > Fa., ,, wereject the hypothesis H,, at a level of confidence {false-alarm
probability} of 4.

Tests of these hypotheses without the assumption of normality will be discussed
later.

Significance of Effects Revealed by the Data

i one or more of the hypotheses (83) are rejected, one would naturally wish to
determine which effect or which interaction led to the rejection. The usual "™* test of
data that appear large is not valid unless the experiment was designed to test the par-
ticular hypothesis suggested by the data. Valid statistical tests of multiple comparisons
have been derived by Tukey and by Scheffé [47,60,61], Tukey's method can be applied
to the row {wavenumber) and to the column (frequency) effects but not to the interactions,
since it requires equal covarisgnces,

Scheffe's test is specifically applicable to "contrasts" suggested by the way the data
fall out. A contrast among the parameters 2y, ..., ap i8 2 linear function of these
parameters.

=S

i
-MH

W2

P
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A more useful contrast than the difference o; — a; between any two parametgrs is th_e
difference between the averages of any two subsets of the parameters. The interactions

themselves are contrasts (y;; = mij — m. —7m.; t 7..)- We shall pe concerned with
these as well as contrasts among interactions, e.g., between the interaction of one cell

and the average interactions of its neighbors.
An estimate of a contrast in interactions is

~— I
2

i=1

¢

J
ol
Cij Yij
I

.

I
Z Ci; Wi, =¥, =¥V ;)

i=1

M-

—

i=

(72)
using (52), where
L
IDITEL
=1 j=1
In general, ¢ # 0. We say that J is significantly different from zero if and only if
191 > s55 ' (13)

W

where S2=u1F,. ), vy vi = (I-1)(J~1), va = IJ(K—-1),and 5%y is an estimate of var §
given by

I I I
' 523 = ZZ ichjcjfj:cov(';ij, ';j‘j')

I
]
[~
-
]
....M
h‘:’
‘u.”
[
=/
™

1
15O T IR 2 2 i i) (1)

2

Here s?is an unbiased estimate of the variance -2 and is given by

S2=8S_/IJ(K-1), ("75)
where S5, is given by Eq. (64).

The F test based on Eq. (71) will lead to a rejection of the hypothesis #, , if and only
if some contrast in the interactions is significantly different from zero. The F test can
therefore be considered as a preliminary search to determine the existence of a target
{detection), with the test of contrasts used to determine its parameters {estimation).
Tests of significance of contrasts in the row and column effects are similarly defined.,
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Interpretation of Resulis

I may happen that the hypothesis of no interactions is rejected and the hypotheses of
no wavenumber and no frequency effects are both accepted. In this case we conclude
that there must be differences in these effects but that the data are insufficient to reveal
these differences when the wavenumber effects are averaged over all frequencies and
vice versa. The interactions are of primary importance in our application.

E the hypothesis of no Irequency effects is rejected and the other hypotheses are
accepted, we may suspect the existence of isotropic, single-frequency noise.

A broadband source in the direction of the axis of the array may resull in a signifi-
cant effect at zero wavenumber with no frequency eifect or interaction. Our definitions
imply that no other spatial direction corresponds to a single wavenumber, sgo that a
physical process giving rise to other row effects withoul column effects and inferactions
does not appear meaningful for acoustic data transformed from space-iime to wavenumber-
freguency.

Extension to Nonnormal and Nonwhite Data

As mentioned previously the least-squares estimates of the interactions, Eq. (62),
are valid for any distribution of the data. This is illustrated in computer-simulated
experiments discussed below. For nonnormal data, of course, the statistic defined by
Eg. {711} no longer has an F distribution. Unlike the usual analysis-of-variance applica-
tion, however, the number of degrees of freedom (v1 = (I - 1Y (J ~ 1), v2 = IJ(K - 1)}
is quite large in our array application. ¥ the distribution of the data is known, some
convenient function of the statistic defined by Eq. (71) or Eq. (73) may be asympotically
normal, as is z = (£n F)/2. In any case, an empirically determined threshold can
suffice to determine significance.

Simulated Experiments

The above analysis has been applied to computer-simulated sinusoidal signals in
normal and nonnormal noise backgrounds. K the noise is normally distributed in the
space-time domain, its amplitude is normally distributed in the wavenumber-irequency
domain, its power spectrum hag a chi-square distribution, with a Rayleight distribution
of magnitude and a uniform distribution of phase. Qur program permits analysis of all
four of these distributions generated from the same "data" samples,

Figure 1 is a computer printout of the analysis of the amplitude specirum of a sinus-
oidal signal in white normal noise, In this case the signal-to-noise ratio was -6 dB, and
eight replications on an eight-by-32 array were simulated. The “target” was placed at
a point corresponding to about 1/10 of the distance between the 23rd and 24th column and
3/4 of the distance between the 5th and 6th rows. The "data™ did not reveal a significant
row effact, but the column and interaction effecis are highly significant. The five largest
of each category are printed in Fig, 1, Note that even though the row effect is lost, the
row-column interaction appears as expected. Here the real and imaginary parts of the
spectrum are treated in adjacent columns, '

Figure 2 gshows the results of the analysis of the power spectrum of the same "'data.”
Since there are now only half as many columns, the degrees of freedom are not the same
as those of Fig, 1, and the "target" frequency corresponds to column 12. The statistics
labeled F, of course, have the F distribution only when the transforms of the obser-
vafions are normally distributed and not in this case {chi square} or in the cases to
follow in Figs. 3 and 4.
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AU

DATA FILE NAMES? Z0N1/
CUNTRAST FILE NAMEs? /CNY/
NU- LARGEST: HUNsCuULsINT=? 5,53

FtA)Y = «49%s DaFe= Tr 1792
F¢a) = 2¢715s DeFem s 1792
FCAR)Y= 28682 DeF ez 217+ 1792

LARGEST ROW EFFECTS

Rt T3s =114
RC 1= 552
LX) By= «117
R¢ er= 277
R¢ = =+183

LARGEST CuL EFFECTS

C¢ 23)= 14367
c« 24)= 4350
[+44 26)= 3.203
(A4 = 3-136
[+ 1= 2584

LARGEST INTERACTIONS

T¢ 6 232= B5.916
T¢ S» 24)= 244519
T¢ 6: 1727 14478
TC S5, 25)= 13:236
TS 4 24)= 12.858

Fig. 1 - Computer printout of the analysis
of variance of the amplitude spectrum of a
signal in normally distributed nocise for a
signal-to-noise ratio of -6 dB

Figures 3 and 4 show the analysis of the Rayleigh-distributed magnitude and the
uniform-distributed phase, respecively, of the transforms of the same “data.” Had the
*target” been placed on a point corresponding to one cell, the phase of the signal would
have been zero, and the analysis of Fig. 4 would be meaningless. Thus the value of
the phase is not a very meaningful test. Nevertheless it is interesting to note that the
“correct” cell does have the largest interaction in Fig, 4. Note also that the noise -
cells among the “top five” differ in these analyses.

The signal-to-noise ratio of the Fig. 5 "data" was -20 dB, the "target" corresponds
to cell (3, 17), and all else is as in Fig. 1. The row effect, the column effect, and the
interactions are all not significant, The interactions were statigtically significant in
three out of ten simulated experiments at this level; however the largest interaction
corresponded to the ""correct' cell in all ten, The largest interaction indicated the "cor-
rect' cell in six out of ten simulated experiments at the -23-dB level; two of these
showed statistically significant interaction effects, At the ~-26-dB level no interaction

effects were significant, and the "correct cell was indicated in two out of ten simulated
experiments,

For a known distribution of observations the significance points of the distributions
may be calculated. K the distribution is unknown but can be assumed stationary, it may
be possible to obtain empirical significance values.
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Ru

DATA FILE NaME®? /DCIs
CONTRAST FILE NAME=? /CCL/
NJ. LARGEST) RJA2COLs INT=T Ss5.5

Feay = AZ2.433s OeFe= Ts 319
Fig) = 468322 DafFaz 15s a9s
Filaas= A5 Ta DeFax 195: 1119

LARGEST HQW EFFECTS

Rt 6}= 835. 445
Re ERE =53TeBAT
R¢ 2)= &1 .ad8
R¢ B)= ~FAB59
R¢ 1¥1= -112.0891

LARGEST COL EFFECTS

c¢ 12)= 1884.834

Gt 111= 27.136
c¢ 9)= =5+964
e = -58.687
c¢ Ti= =-98.387

LAAGEST INTERACTIONS

TC 6 12)5 12617130
Te Ts 18)= 540 +5 44
T< 1 18)a SQ3.260
T¢ 4 V= 582.473
T¢ Tr M= 436 » 428

Fig. 2 - Computer printout of the analysis
of variance of the power spectrum of a
signal in normally distributed noise for a
signal-to-noise ratio of -6 dB

Application to observations on phase stability rather than phase itself may be more
meaningful, since the latter may be zero in cases of interest.

1t is possible to extend this analysis to Fourier transforms of four-dimensional
space-time samples. Let

Yijpdem = Tijed ¥ Cijpin

represent the nth observation of the ith, jth, and kth components of the wavenumber
along the x, y, and z axes respectively at the 4P frequency, where the {n;;,4} are un-
known constants and the {»;;,{,} are random variables. Of primary interest here is not
the separate wavenumber and frequency effects but the four-way interaction estimated by

LABCD _
Ciird T Yigpd TYije. T¥ip A T ViRh TV ik,

+¥; LRSI TR ST LR SR AL A I AL S

Foo.

—Y¥io . Y 7Y k. Y ATy ,
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RUN

DATA FILE NAME=? /DPR1/
CONTRAST FILE NAME=? /CR1/
NJe LARGESTE ROWsCOL»INT=? S$55:5

F{Ay = 11994 DeFe= T B96
Fay = 135782 DeFex 13 B96
F{AB)= 5.45%9, DeF.= 105, 896

LARGEST ROW EFFECTS

R¢ &)= 7.418
R¢ 23= .a21
Rt 8= “.145
RC 5= 316
R 43= =941

LARGEST COL EFFECTS

C¢ 12)= 16893
e 11)y= 1+968
e gr= 1.343
o1 = =--085
¢ 1= ~«3d2

LARGEST INTERACTIONS

T¢ 6s 2= T1.562

TC 4 9= B 426
TC Te 10)= B.261
TC Te M= 6.985
T« 2r 62= 6+314

Fig. 3 - Computer printout of analysis
of variance of the magnitude spectrum
of a signal in normally distrubuted noise
for a signal-to-noise ratio of -6 dB

ABCD _
ijkt ”

Under assumptions of normality, statistical independence, and equal variances the
statistie

and tests of the hypotheses H,g.p: 3ll « 0.

2
DI % @ffiz) (I-1)(J-1)(K-1)(L-1)
F - i i k
“ner E z kz {Z 2 Vijiedm —Vijed )2 /LIKLH-1)
£ 7 m

has an F distribution with »; = (I - 1)(J~ 1)(X—1)(L-1) and vy = IJKL(# -1)
degrees of freedom [47]. One obvious application would be to sampled data from a
three-dimensional acoustic array.
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RuN

DATA FILE wAME=? sDuUl/
CUNTRAST FILE NAME=? SCuUt/
Wihe LARGEST: RUNCOLs ENT®? 50555

FtAy = 3435, GuFas 7s
Figy = 1edZ8s DeF = iS5
FiAB)= 1482882 DafFasz [CED

LARGEST ROA EFFECTS

RC &)= =12
RC a3= « 13t
RE Bi= Q73
R¢ 2i= =883
RC 1= -«q25

LARGEST CuL EFFECTS

14 £83= Y130
ce 8y= <359
ot 2= 1247
[+ 433 »219
[e14 18)= +132

LARGEST INTERACTIQNS

Tt fs 12)= J:1ta
T¢ 1, 15)= 1,327
T 7s 16)= 1118
Tt Ta 10)= =828
T¢ > 4)= +824

Fig, 4 - Computer printout of the
analysis of variance of the phase
specirum of a signal in normally
distributed noise for a signgl-to-
noise ratio of -6 dB
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896
896
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DATA FILE NAME=? /DN1/
CUNTRAST FILE NAMES?T /CNL/

NQ« LARGEST?

FrlA) =
FeBgy =
FeaBy=

RUWS CUL» INT2?

1419+ DaFo=
2972s DeF ez

1.28

s DsF.=

LARGEST RO« EFFECTS

R{
R{
R{
R{
R(

3=
4)=
1)=
1=
6)=

T«236
5. 49%
5.119
-«729
=+938

LARGEST CUL EFFECTS

c<
124
4
ce
[+]4

&)=
173=
26)=
19)=
2a)=

17265
15315
13.379
12.783
124486

LARGEST I[NTERACTIUNS

TC
I«
T(
It
TC

3.
b
3s
LT
3

171
12)=
25)=

13=
18)=

5s%:5

Ts
A
217,

BB.129
16.018
73196
69.6%2
55.360

1792
1792
1792

Fig.5 - Computer printout of the
analysis of variance of the amplitude
spectrum of a signal in normally
distributed noise for a signal-to~noise
ratio of -20 dB
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Appendix A

SAMPLING THEORY

E. T. Whittaker [Al]l, §. M. Whittaker [AZ], Shannon [A3], and others have
shown that a function f(x) whose Fourier transform g(y) ¢ Ly(—a, a) and vanishes
outside (-a, a) can be exactly represenied by

f{x‘}l = i f{n/2a) [sinm{2ax — n}l /m(Zax —&}. {Al)

Thus if f(x) is to be estimated by sampling, the set {f(n/2a)} is a sufficient statistic.
Furthermore, if T is any 1:1 transformation, then T{f(n'2a)} is also a sufficient
statistic, This concept of "conservation of information' justifies mapping the {ftn/2a)}
into any space which facilitates analysis. Given the {f(n/2a)} the generality of trans-
formations available for analysis is limited solely by the available computational facility.

In a practicatl application of this theorem the band-limited constraint of f does not
gencrally create any serious difficuliies; the spacing 1/2a of the uniform samples may
be difficult to achieve; and of course the infinite set is never available. On the other
hand the exactitude provided by Eq. (A1) is seldom required in practice. The explicit
determination of £ for all x is also seldom required. Errors introduced by improper
spacing and inadequate sampling may be amenable to analysis.

An array may be considered to provide a sst of multidimensional samples, discrete
in one, two, or three spatial dimensions and either continuous or discrete in time, The
multidimensional analogs of the sampling theorems discussed here will therefore permit
a very general analysis of the information sampled by the array.

ALIASING

A set of equally spaced samples, {f(n/22)} does not uniguely determine a function
but rather a set of functions; Whittaker's cotabular set (the set of aliases [Adl }.
Equation (A1) determines the cardinal function {the principal alias} - the unigue member
of the cotabular set with the smallest maximum frequency component < a, where
a = 1/24x is the Nyquist (folding, or cutoff) frequency, with Ax being the {uniform)
sample spacing. Thus i a function g(x) which contains a component at frequency » > a
is sampled with a sample spacing of Ax = 1/2a, that component will be replaced by ils
prinecipal aliag in the reconstruction by Eg. (Al).

POISSON SAMPLING

The problem of aliasing is an inevitable consequence of equally spaced sampling.
No workable scheme seems so far to have been developed to sample at a definite but not
uniformly spaced pattern and thus avoid aliasing [A4,A5], We will comment further on
this possibility in a later section, One approach {o alias-free sampling is in the werk of

32
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Shapiro and Silverman, [A5], who show that if the sample points are randomly distrib-
uted in accordance with the Poisson probability law, the sampling is alias free. If there
are u samples per unit time (distance), then the probability of exactly n samples in a
period of length T is

Pa(iT) = e T (uT)/n! (A2)

The waiting time (distance) to the next sample then has the exponential probability
density function pe~#*. That Poisson sampling is alias free "follows ... from the
completeness of the Laguerre functions™ [{A5],

There are some interesting transformations related to Poisson sampling. Bolgiano

and Piovoso [A6,A7] claim an efficient representation of certain waveforms is obtained
by a "Poisson trangformation.”" This transformation may be defined as

ca

£ o= f F(x)p (x)dx, {A3)
0
where p, is given by Eq. (A2) and
fix) = i £ & (x), {A4)
n=0

in which

8a00) = (-1 27 ex f (”;”) Loy, (2%},
v=0

1]

where

L=y (f;) (~x)/k

k=0

are the Laguerre polynomials [A8]. As with the efficient representations by Huggins
[ A9] and others in terms of orthonormalized exponentials, this "Poisson transform,"
Eq. (A3) cannot be directly applied to discrete (sampled) data,

A related discrete transform (essentially a Gram-Charlier series, Type B) is given
by Schmidt [A10]. Letting » = ,T in Eq. (A2) we can write

k o
B =35 S Hm 50, (A5)
n=0
where

£ =0, 3 FO) {00,
k=0



34 BWICK, YOUNG, AND FINNEY

and

" PiAY ke

(Expressed in terms of the associated Laguerre polynomials [AB],

L= 3 (R10) 25

w=0

pLE)M) beeomes

pFYAY = kIATRLn=RY oy = i(—l)k-” (“‘)(") v,
v==0

v v

The relationship of the transformation given by Eq. (A5} to the Vefficient" represen-
tation given by Eq. {A3) and to alias-free sampling remains to be shown. The generali-
zations of the sampling theorem discussed below may provide a useful connection, with
a sampling theorem based on a Poisson-Laguerre type transformation.

GENERALIZATIONS OF THE SAMPLING THEOREM

Weiss [A11] and Kramer [Al12 ] have generalized the sampling theorem to functions
which satisfy integral transformations other than the usual Fourier one. Let f(x) satisfy
a Fredholm equation of the first kind:

£y = [KG, yetdy, (AT)
I K

in which the kernel K(x, y) ¢ Lo(I) for each real x, g(y) € Ly(I), and there exists a
countable set {x;} such that {K(x;. )} isa complete orthogonal set on L,(I). Then

Féx)y = Z Fxpy E(x, %)) {A8)

is a generalization of Eq. (Al). The interpolation functions are given by

JROu KOG 9 dy

I, x,)=" . (A9)
Y [k, nlPdy
I
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Campbell [Al13] and Jerri [Al4,A15) have compared the WKS (after both Whittakers
[A1,A2] , Kotelnikov[A16], and ShannoniA3]) sampling theorem, Eq. (Al), with the
Kramer generalization, the WKSK sampling theorem, Eq. (A8}, They conclude that the
classes of functions samplable with each of these theorems are identical. Jerri [A15)
states that the "possible advantage of the WKSK sampling theorem' may become clear
when one "considers other integral transforms besides the Fourier one" for analysis.

Another possible advantage may be conjectured by noting that the class of sets of
which {x.} is an element is a broad one with few restrictions. In at least some cases
it may bé possible to find a complete orthogonal set {K G ¥)} corresponding to a given
{x;}, equally spaced or not. A sampling theorem using such a set may avoid the
aliasing problem.

Following the work of Jerri [Al14], Kramer-type sampling theorems based on
Legendre functions and on Besgel functions have been derived. Using transformations
based on Legendre polynomials, three sampling theorems (with unit sampling interval
a = 1/2) are

- 2 ., sinm{x—j) 2j+1
£(x) ,-:zofm D (x+,-+1)"‘3°* (A10)

1

® sinmw({x—f .
f(x)=Zf(j+—,i,—) ( 2)( 2j+1 ),x.z 0, (Al11)
0

Tr(x—j-—-:ls-) X+ j+ %

and

T —J) (2’"1\ > 0. (A12)
X

2 .. sin
0= 2D =Th et

The second of these, Eq. (All), is given by Campbell [A13]) and by Jerri [A14]. A
striking feature of these theorems is their similarity to each other and to Eq. (A1), Yet
they are not identical and produce different results in approximations using a small
number of terms.

Uging the transformation

1
Foxy = f ST/ () dy

0

we obtain the Bessel-function sampling theorem

o 21/—
£ (x) Z £(x;) % Jnlvx) . (A13)
i1 (x5 =% ey (‘/X_J)
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where
Jn(/@ze, iz 102, ...

This sampling theorem was obtained by Kramer [A12] and by Jerri [A14],

The transformation
1
fix) =f yJ, xv;8{y) dy
1]

vields an alternative Bessel-function sampling theorem given by Campbell [Al3]:

2 x; S x)

, (A14)
,?—x’) I e 16

Foy = 1)
X ; X; (x

where
Fo;) = 0, F=1 4 ...

Note that in Eq. {A14) the sample points x; are asymptotically equally spaced, whereas
in Eq. (A13) they have unequal spacing.

STOCHASTIC PROCESSES

Sampling theorems have alsc been derived for stochastic processes [Al17,Al8]. The
set {#({+;}} are then regarded as "the cbserved values of a multivariate complex, Their
characteristic feature, however, is that the order of the sel ¢y, ¢, ..., ¢, I5 material
and not, for example, accidental as it would be for a random sample x;, x3. ..., x5
in which the suffixes are adjoined for convenience of identification” [A19. Recent wark
by Shumway and Dean [A20] and by Shumway [A21] indicates methods of application of
statistical-estimation, regression, and analysis-of-variance techniques to these prob-
lems.
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Appendix B

INTERPOLATION USING FINITE FOURIER SERIES

In the section "Interpolations and Transformations" f(x) is a complex function of a
multidimensional vector. We now consider use of finite Fourier series to interpolate
data sampled from a real continuous function f(x) of the single independent variable.

If an odd number of sample points (2n+ 1) is located within an interval L of x, f(x)
may be represented by

£{x) = {a,/2) * Zn [ak cos (2mkx/L) + by sin (QWkX/L)]. {B1)

k=1

If the number of points is even (2n), one representation is

fx) = i [ak cos {2mkx/L + by sin (27rkx/L)] (B2)
k=0
or alternatively
f)= Y {a cos [m(2k—1)x/L] + by sin [7(2k-1)x/L1}. (B3)
k=1

Asg is discussed in the Refs. Bl through B4 the equations are derived from the usual
complex Fourier representation by imposing the condition that 7(x) be real for all x.
These equations simply represent possible choices of basis functions for the approxima-
tion of f(x) over the interval. When the sample points are equally spaced on the interval
(x = (j—1)d, whered is a constant), the basis functions are orthogonal on the
sampling points, and the coefficients may readily be computed. This is the primary
reason for the widespread use of the above representations. For example the coefficients
for Eq. (B1) are easily shown to be

2n+1

2
ak:m Zof(xj) cos [271k(j—1)/(2n+ 1)] (B4)
ia
and
2 2n+1l )
b= 5mrT 1 £(x;) sin[2mk(j - 1)/(2n 1t 1)), (B5)
i
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Substituting these into Eq. (B1) yields

2n+i n 2n+i
( Z £y + 2 Z Z £y {cos (2mkx/Ly cos [27k (j-13/(2a+ 1)}
j=t

k=1 j=1

1
2n+ 1

fexy=
+ sin (2mkx/LY sin [20k (- 1)/(2n+ 1)1})
which, with 4= L/(2n+1) , becomes

Zn+l

_ 1 = x . :
FGey = Z £x;) T {1 + 2 ; cos {zwk(_d_u i+ 1)/(2ﬁ+ 1)}},

i=t1

This is of the form of {16) with the interpolation function

_ 1 T x .
I, %) = 5 {1 + 2 gms 27k — j+ DA2mt 1)}}. {BS}

The corresponding interpolation function derived from Eq. {B3} is

I, x)) =%;cos [m{zkd)(%— e 1)/2:1, (B

and that corresponding to Eq. (B2) is

n—1
I, %)= ﬁ{l +2 3 cos [znk@ 4 1);2.{] + cos [Ewn(«gu i+ l)fzn]}

k-1

As the number of terms tends toward infinity, (B8), (B7), and (B8) tend toward the same

limit,

sinwix/d—j+ 1)
w{x/d—j+ 1}

I(x, x;) - {BY)

which is equivalent to the usual interpolation function of Eq. {Al}. Although Egs. (BT}
and (B8) are interpolation functions for use on the same data, they are different, a fact
based on the different choice of basis functions in Eqs. (B2} and {(B3}. This is analogous
to the interpolation functions of {Al), (A10), All}, and to {A12}. The specific choice of
bagis functions which will be "best" will depend on the data,

Numerical examples of I(x, x )for d = 1 are tabulated in Table Bl {n = 10) and
Table B2 (» = 100y, where 81, 82, 83, and 54 correspond to Egs. (B9}, {B6}, (B7) and
{B8} respectively. Note that, for the same number of terms, the difference between
Eq. (B8) (S4) and Eq. (B3)(S1) is about twice that of Eq. (B7)(S3) and Eq. (B9)(S1); Egs.
(B6) and (B7) yield very similar results. All of these functions obey the necessary con-
dition for interpolation functions {with linearly independent sample values)

I(x %;) = 8 {B1O)
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The procedure followed above in deriving the interpolation functions is based on avail-
ability of closed-form expressions (e.g., Eqs. (B4)and (B5) for the coefficients in (1).

The matrices defined prior to Eq. (17) may be used directly to compute this equation.
For the case of interpolation, namely m = n, U= P-1. As an illustration of this direct
approach, consider the approximation in Eq. (B2), based on an even number of sample
points (2n ).

The basis functions may be written as

cos Rr(k-Ly)x/L}, k=1,2, ..., ntl,

S, (%) z{ (B11)
sin [27(k—n—Vx/L], k=n+2, n+3, ..., 2n,

Evaluation of Eq. (B11) at the points x; gives the matrix p. If this matrix is nonsingular,
its inverse p-! may be computed and substituted into Eq. (17) to obtain the desired inter-
polation function. Note that this procedure does not depend on the orthogonality of the
basis functions, on the x; chosen, or on any particular choice of the x; .

A computer program which carries out the procedure outlined above and prints the
interpolation functions over a range of x for j=1, 2, ..., 5 has been written, The
sample points x; may be equally or unequally spaced. Some results are shown in Table
B3 (equally spaced x;) and Table B4 (unequally spaced x;). We let 2n = 20, to corre-
spond with the tabulaﬁon in Table Bl. (Compare $4 of Table Bl with the case y =1 of
Table B3.) Note that, as indicated in Eq. (B8), the interpolation functions are symmet-
rical about x = x; and the form of the functions is independent of ;, that is, all of the
tabulations in Table B3 are of the same function simply displaced with respect to the
tabulations for other values of ;. The results in Table B3 satisfy Eq. {B10).

The tabulations for unequally spaced x; in Table B4 are also seen to satisfy Eq.
(B10), although the functions are not symmetric about x = x; and the form of the inter-
polation functions depends on j. It should be noted that some of the functions assume
values greater than unity for some values of x, which can occur when interpolation is
carried out on data taken at unequally spaced intervals,
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Table Bl

Interpolation Functions (Egé. (B6) through (B8) for » = 10)

X 31 a2 53 34
Fed 1.833889 1396033 1.-002806 1. 3ogAga
el «383631 « 283668 « 983672 s FB3553
-2 e 35489 « 235628 335643 « 235151
«3 «B58393 * 355681 +858711 + 337758
-4 + 736426 + 757278 + 757324 + 733833
+ 5 -636619 «&3T213 «&3T2T4 +53531%
Y- « 534551 « 5335229 « 535298 533856
+7 « 357483 « 368556 + 3685625 = 3566339
«B + 233872 + 234431 = 234438 +P32639
9 139292 = 139623 « 1839457 « 18563
1+3 +ZBARAG «AFAFIA - FRGARG « ARG B
i.1 - 287421 ~.339R25 =~ «B3BIBET -+333529
ie2 ~«1559t4 -+ 156755 ~+1 56842 -+ 154063
t+3 -+198899 -+199345 ~«199474 —«1953329
1+4 -+216236 -+217825 -+ 21798% =~ 21273%
1.5 ~+212286 -« 213993 =21 4182 -+ 283255
1«8 -+ 189286 —«121825 ~+121213 -+185225
te7 -+1351 48} -+153126 ~+1532964 -.147%43
1.8 “+183943 —e1@5210 ~e 15341 -«131198
1.9 -«351770 ~«A32473 - «352546 = G5SA223
2.8 ~+QDBGIG -} ATAEE - PEAGHT =« 333233
2.1 + 346839 «B4TEL1D 2347699 B 45128
2e2 «3350 44 +3B65392 ~P86761 +JB1631
2.3 +111964 s 114264 « 114437 187834
224 2126137 +1 28889 129175 <1201 A4
25 127323 =1 3T 341 - 138656 128713
2.6 116434 «1 19423 »119735 + 129883
2.7 «3Po377 ~398328 L BIR2ZIT ~ARBFIEE
2.8 +@56320 +A4BB1S “Za9B2Z4 «BE2 495
a9 ~33391 8 «F35096 333128 + 331539
3.2 «FEBDAG « 330333 «RDB2RY =383300
3.t -+331730 -+3328%6 -+033819 -+329131
3.2 -+308468 -.068762 —«361034 ~«i#53458
3.3 =«378335 -«381298 -.1831643 -« PFIFTF
3.4 = «UB9FIE - B92996 -«@33416 ~ . PBNABT
3.5 —eBFTATAG - «BI5238 —e@FI6T 4 ~«B3E1 532
3.6 =« 384991 ~«383293 - 388746 -+ 374931
3.7 ~+8695399 ~+373284 ~+BI3STT =+ @51 38F
3+B =:743236 -«351991 -« B3522846 -« 43245
39 - 5221 -.326711 meRZ6HBTH -~ 21984
L8 —-BARERG =« BABRES = «BRABHI - - APANAA
4l +323991 »325564 +B25723 «A2FSTE
422 vBAa44247 21347519 + Q47350 237887
4«3 359837 AEA226 « 364594 «B3F 49T
4o d @6 HHRITS HFTAB34 37 A5O1 «B57481Y
43 «B7BT3S «BTE3T5 376938 358542
446 «365811 371387 371996 + 353938
427 + 354791 +B5953Y » 360184 sBaaas 4
4.8 ~AIRITH « 342541 42932 31256
b +J2387 4 «g21 2921 G202 +R15%44
58 B B32Y - 3UBVBY « 323332 230353
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Table B2

Interpolation Functions (Egs. (B6) through (B9} for n = 100)

x Sy $2 53 54
Bed 1.899994 1.030089 1.0303060 1.603369
- « 983631 < 983632 + 983632 .983633
.2 +935489 . 935490 «935490 . 935486
.3 < 858393 .858396 CB38396 .858387
o4 . 756826 « 756831 .« 756831 . 756816
o5 « 636619 «636626 «636626 « 636606
.6 « 534551 . 524553 « 504553 « 504536
.7 «367833 < 367393 + 367590 . 367865
.8 «233872 .233878 +233878 «233862
.9 139292 139296 2199296 . 189245
1.3 «AOANBD - PUVBED - APBBBO - QADBGE
1.1 - 389421 ~.89425 -. 089425 -.G89412
1.2 -.155914 - 155924 -.155924 -.1558%6
1.3 -.198890 -.198104 ~.198104 ~«198763
1e4 -.216236 -.216853 -.216253 -~ 216201
1+5 -.212206 -.212226 -.212226 - 212167
1.6 -.189236 - 189226 - 189226 -.189166
Let -. 151481 -.151499 -.151499 - 151445
1.8 -«183943 - 133956 -.103957 -.133915
1.9 -.@51770 - BS1777 -.051777 -« 351754
2ed - .BPI08Y -.003U92 - 3IABAG - . 300800
2.1 “D465339 «BA5643 + B 46848 S A46RD2
2.2 «985844 +385061 «ORS061 LABS5T1 0
2.3 «111964 «111988 «111938 S111915
2.4 « 126137 .126167 126167 126973
245 $127323 L 127356 «127356 «127258
2.6 v116434 116466 ‘1164567 116379
2.7 “WY9S377 «A95435 «095405 «BY531Y
2.8 56824 B65842 668482 066717
2.9 «333918 .333929 CU3393% .933894
3.3 «393708 «ABFA00 <3933 302209
3.1 -.731730 - 231742 -.331742 -e@31794
3.2 - 953468 - 58492 ~.053492 -.358418
33 -.9T8035 -.378ATH - ATRATO - 377945
3.4 - E9A 3T - 389283 -.289383 -.388953
3¢5 ~.099945 - 397991 -.992991 - 390854
3.6 -.284@91 -.334136 - 084136 “.RR4ATD2
3.7 - 069599 -.569638 - . 369638 - (169521
38 -.349236 - 49265 -~ A4EIRES - G491 77
4.9 -y 3381 -. 225236 -.B25237 -.A25189
4.4 N ErTL LT - . AB3399 - 320000 - AN
4.1 «323991 “B24DDT L0453 T «@23957
4.2 cBAL54T «G44579 144579 cGLL432
443 +959887 . %59933 .059933 +359796
4.4 +B568892 < D68856 «368857 «B68692
4.5 “@73735 ~BTH793 ZBTIT94 «373617
4.6 “B35581 1 +065367 « 65868 .A65696
4.7 354791 “OS 4843 < G548 43 «A54691
4.8 ~g35978 +339215 «039915 +238904
4.9 «320374 ~329093 L Y2093 LA20A34
S0 «HPRAD «BANAAD < ABRA20 +AHABAD

43
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Table B3
Interpolation Function (Egually Spaced Sample Points)
X J=i J=2 J=3 J=4 J=5
A .G 1.808803 ~AREADD - . J0A33S - 03303 AP aaa
il « 983558 18563 ~+B}5B223 «031339 -+ F21584
« 28 «+ 235181 « 232639 -+ 181158 RE2455 -« B43245
« 30 «857758 + 366399 -=147883 + 389588 -~ B61583
« 40 +« 755838 + 333856 -+ 185266 « i@9BEEB -e@THFI]Y
« 53 « 435313 « 635319 -+ 208265 120710 -.3815%2
« 58 « 533656 « 755838 - 212739 128104 - B33 407
« 73 » 366399 «B57758 -+ 195329 + 137458 - JTESLTY
- 8@ +232639 + 935181 -+134863 «3B1531 =.353458
« 98 138543 +$83553 - @BB529 «A45128 -.22%2181
1+.88 Ryclese e icte] 1.280838 -+ 332083 -+ 3P3333 + 233308
1.19 -.3B8529 + 983550 + 188363 -+ 3538223 «FIL33F
1.28 -+ 154863 + 935181 22324839 -« 1@ti58 «Z 62455
130 -+195329 «857758 « 366399 ~e 147863 +389588
t+45 -«212739 « 7155833 « 583856 -+ 185286 - 139888
1.5@8 -+ 288265 + 6353128 + 635318 -+ 2RABDES L 12878
160 -+ 185286 + 533356 = 7353838 -« 212739 +128184
178 ~«1AT7T8BA43 .« 364399 «+ 857758 -+ 195329 « 127058
t« 88 ~+ 121158 « 232639 «935181 ~e 154863 «381631
1 .98 -. 353223 +1B885863 +98355¢ -~ PRES2T +345128
.08 -+ DRFAAA « 20333 1008000 ~+ ABODAD 0871710 451 8 8
2.10 +F45128 - @88529 «FEIS5D « 138563 -+ 350223
0428 381631 -+ 154863 « 2351861 «23263% -+ 101158
2.30 « 137350 -+ 195329 + B5T7TTSE + IH£39T -+ 14TBE3
2.48 128184 -+ 212739 « 735838 «SP3B546 -+ 185286
258 - 128718 -« 2082485 « 535318 «&35318 = 28265
2468 « 139888 -+« 185284 « 583856 « 755830 -+212739
2.73 +389588 - 147863 + 366399 +B57738 -+ 195329
2. 80 +BE2 455 -+ 131158 + 232639 + 935181 -+ 154343
2.98 « 331539 -+B 58223 « 138583 « 983558 -+ Q88529
3.008 Q00288 -+ 323368 +BR2006 1.902080 ~+300208
3.10 -+B29181 SA45128 - AEE529 + IB3D5E + 1BR548]
3.20 ~+@53458 »B381531 - . 194063 « 935181 - 232439
3.38 ~BTHAFLT « 1FTHS5E -+ 195329 « 857758 « 356399
.48 =~«Q8B487 «120104 -e212739 « 755838 «S838545
.54 -+ Q81592 120713 -.208265 «635318 +635318
3+ 68 ~+ 174931 + 1A988R -+ 1B5204 = 5@38%54 « 755833
3.73 -~ 351588 «AB95EE -«147B&3 - 3566399 «B577538
3.808 -eA 43245 «B62455 -«161158 « 232639 «93518}
3.9¢ =.321984 +@331539 -+ PSB223 «» 138563 « 283558
4,00 = +AAAABD +3O0ARR - AAPPAA «AAFEAD 1 .6a3043
44189 JAZASTH - G291 81 «3a5128 -.3BBS2% « SE3IS558
4.20 «337888 ~e 353458 +BB1631 -+ 154063 « 335181
4.38 3524598 ~«QT3917 « 187353 -«195329 + 85 TISE
4. 43 «B5T481 - 0BG 487 120104 - 212739 « 755830
458 «@58342 -. 081592 1207103 -+ 208245 « 535319
4o b «B53938 - BT4931 + 129888 - 185286 « 5&3%56
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Table B4
Interpolation Function (Unequally Spaced Sample Points)

X J=1 J=2 J=3 J=4 J=5
B.00 1.909000 -.0080000 -0000200 -+ 00000 - . 320908
«10 « 821657 « 327083 ~+ 270840 «212656 -.146142
20 «661960 «593622 -+460627 » 355071 - 242033
» 30 «521014 « 802159 ~+575647 «434888 -+293844
1] « 398541 + 955949 -+ 623427 + 460692 -«308383
«50 «293923 1.859175 ~+612431 + 441580 - 292727
« 60 « 206257 1.116691 ~+551754 + 387333 -.253994
«70 134408 1.133834 -+ 450820 «387117 -.199121
« B0 «@77858 1.116249 ~+319109 « 218199 -+134637
« 90 +@32763 1.869717 -.165891 «1852085 -+@665182
1.20 ~+ 200330 1.000000 200000 -+.00008D «302924
el -.822789 « 212696 «170371 -.098482 «@6B472
1.28 -.@37152 «813122 +«337833 ~«184374 +111375
1.30 ~e044591 + 786199 « 495935 ~+252964 150119
1.+40 -+046530 « 596376 « 639252 -+300748 » 175862
1.59 -«044290 « 487562 « 763448 -«325439 « 185481
1.60 ~+Q39867 + 383083 + 865295 -+ 325938 «181520
1.70 -+@31919 «285668 « 942662 -+ 382272 1564109
1.88 -eB23755 «197404 + 994471 =+255499 « 134865
1.93 -.015334 «119831 1.826631 “« 187594 +B93969
2.84 -.807261 +053889 1.821%945 ~+ 101394 +B3598 4]
2.10 -+300000 -«03000080 1.2000068 -. 300083 «323939
2.20 006127 -.841886 «95783¢% - 112492 -+951078
2.30 -21092@ ~.B72232 + 895834 «232853 -« 189095
2.40 «@14292 -+0%21843 819540 +354439 -+ 144061
2.50 «216249 -+101799 «731563 « 475438 --188216
2.60 «B16877 -.183382 +5635417 «591921 -«206138
2.70 «216321 -+@098027 « 534608 « 697471 -«219827
2.80 «A14774 -+BB7155 » 432586 e 791499 -«219781
2.90 +A12453 -+@372310 « 332251 =878337 -«205040
3.00 ~3095%0 -+354907 236664 +931811 ~«175220
3.19 «206417 ~+@36283 « 148177 + 974383 -+136513
3.20 «B83154 -«B17636 +J687382 «+997183 ~+B71676
330 -+398838 ~«326200 ~«@22032 1.2003929 -.002600
3.40 -+982876 «B15779 -=857133 «FB3266 «DB2T49
3.50 -«PB5338 Q29056 ~+ 102063 + 348913 «174392
3.60 ~+PB3T286 +339384 ~+134699 +B2581 4 «272414
3.72 --038658 «A46516 -+155379 «B28743 +374362
3.80 -.Q009427 «@50388 ~«164823 « 749097 « 476433
3.909 -.099604 «A511084 - 1648079 + 659693 + 576576
4.08 -«339226 348914 =+154460 + 563374 «67159D
4.10 ~«338359 «@44185 -+137473 «4563104 « 758718
4.20 -.037087 «@37374 -+114756 + 3561830 +835438
4.39 -«095508 «329801 -+.383023 +«262388 «899538
4. 40 =-.003729 «@19515 -.058902 «167416 « 249186
4.50 ~«@01858 009771 -«@29069 «A79278 + 382982
A.69 -.0722800 «-2020030 -.006000 «202000 1.300090




